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Chapter 8

Stress and deformation analysis—

finite element method



8.1 Introduction

8.2 Framework and principles

Linear elastic material, plastic behavior consideration, nonlinear behavior consideration

8.3 Effective stress analysis and total stress analysis 

8.4 Commonly used soil models and related parameters: MC model, DC model, MCC 

model, HS model, small strain model

8.5 Determination of soil parameters

8.6 Determination of initial stresses: 

Direct input method,  gravity generation method

8.7 Structural material models and related parameters

8.8 Mesh generation

Shape of the element, density of mesh, boundary condition

8.9 Plane strain analysis and 3D analysis

8.10 Finite element stability analysis

8.11 Finite element analysis procedure
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8.1 Introduction
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The finite element method is capable of simulating actual geometry of an 

excavation, the conditions of soil layers, stress-strain behavior of soil, the 

level and pressures of groundwater, the excavation depth, construction 

sequence. It is  more accurate than those derived from simplified methods or the 

beam on elastic foundation method

Successful modeling the real stress-strain behavior of soil is a crucial point to obtain 

a reasonable performance of an excavation for the finite element method

Finite difference method is similar to finite element method but with different 

theories and solution procedures. Advanced soil models used to simulate the stress-

strain behavior of soil can also be implemented in the finite difference method.



8.2.1 Linear elastic behavior

External force

Displacement

Body force

FIGURE 8.1  Finite element mesh and boundary conditions
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The constitutive law for elastic isotropic material can be expressed

    D   

[]= stress matrix, In three dimensional space, the stress matrix contains six 

components such as x, y, z, txy, tyx, tzx. In plane strain or stress 

condition, it contains only 3 components.

{}= strain matrix. In three dimensional space, the stress matrix contains six 

components such as x, y, z, gxy, gyx, gzx. In plane strain or stress 

condition, it contains only 3 components.

[D]=stress-strain or constitutive matrix. The main entries are 

Young’s modulus (E) and Poisson’s ratio (m), which are also 

called the deformation parameters.

(8.1)
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FIGURE 8.2  Three-node element
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    u N q

(8.3)

(8.2)

According to the theory of elasticity, the strain and 

displacement at a point within the element

       L u L N q B q                 

/ x 

[L]= linear partial differential operator, 

such as          , y /

The relation between the displacement {u} at any point within the element and 

the displacement {q} at the nodal points of the element

[B]=[L][N]= relational matrix between the 

strain and the nodal displacement

[N]= displacement shape function
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According to the principle of virtual work, we can derive the work done by the 

internal force and the external force in an element

(8.4)

(8.5)

[ ]

[ ]

[ ]G [ ]T

=strain increment 

=the state of stress at the current stage 

=body force =traction, which is the surface force acting on the element

[ ] [ ] d(vol) [ ] { } d(vol) [ ] [ ] d(area)
T T T

vol vol area

B N G N T    

{ } [ ] d(vol) { } { }d(vol) { } [ ] d(area)
T T T

vol vol area

u G u T      

{u}=displacement increment at any point with the element
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[ ]{ } { }K q F

[ ] [ ] [ ][ ]T

E

vol

K B D B dV 

The stiffness matrix of the element [ ]EK

The element stiffness matrix for all elements are then assembled into the global stiffness 

matrix [K] of the element

[q]= nodal displacement matrix

[F]=matrix of excavation-induced external force or equivalent load at nodal points

1
{ } [ ] { }q K F



(8.6)

(8.7)
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TABLE 2.13 Relations between elastic deformation parameters (after Chen and Saleeb, 1982)
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e p       { } { } { }e p      

{ } [ ]{ }e eD   
1{ } [ ] { }e eD   

1{ } { } { } [ ] { } { }e p e pD            

[ ]{ } { } [ ]{ }e e pD D      

{ } [ ]{ } [ ]{ }e e pD D      

 { } [ ] [ ] { } [ ]{ }e p epD D D       

[ ] [ ] [ ]ep e pD D D 
(8.16)

(8.15)

8.2.2 Plastic behavior consideration

According to the flow rule, we have
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[Dp] is the stress-strain or constitutive matrix for plastic material, which is a function 

of Y and Q

[Dep] is the stress-strain or constitutive matrix for elastoplastic material

Known the [Dep], the stiffness matrix for each element can be derived following 

Eq. 8.6, and global stiffness matrix can therefore assembled for all elements.   

[ ] [ ] [ ][ ]
T

E

vol

K B D B dV  (8.6)

Associated flow rule: when Y=Q, [Dep] is symmetric matrix.

 { } [ ] [ ] { } [ ]{ }
e p ep

D D D        (8.15)

Non-associated flow rule: when YQ, [Dep] is not symmetric.

Required soil parameters: E, m, and the parameters for Y and Q



13

8.2.3 Nonlinear behavior consideration

L
o

ad

Displacement

1. {Fext}

T

2. [ ] [ ] [ ][ ]dep

EK B D B v 

3. {q k}=[K]-1{Fext}

...

10. {qk+1}=[K]-1k

9. k

ext intF F  

8. [ ] [ ]d
T

k

intF B v 

1

11. { } { }
iter

k

k

q q


  

Iteration scheme 

(e.g. Newton -Raphson Method)

4. {Bqk
FIGURE 8.4  Procedure for nonlinear finite 

element computation

1. {Fext}=i {Fext }

2. [KE] and [K] should consider Y and Q

(8.7)3. [K]{q}={F}, {q}=[K]-1{F}

4. {}=[B]{q}



σ

Δσ

Δε/m

ε
Δε

m increment

5. [Dep]

Stress integration scheme(e.g. Forward Euler method with 

subincrements)

1

[ ]
6. { } [ ]

m
ep

i

i

D
m







  

7. Update the new stress state by 

{k}={k-1}+{} and  hardening  

     parameters of the yield function

6. {}/m, {}=[D]{}/m

7. Update the new stress state by 

{k}={k-1}+{} and hardening 

parameters of the yield function.

5. [Dep]=[De]-[Dp] (8.16)
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2. [ ] [ ] [ ][ ]dep

EK B D B v 

3. {q k}=[K]-1{Fext}

...

10. {qk+1}=[K]-1k

9. k
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1

11. { } { }
iter
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

  

Iteration scheme 

(e.g. Newton -Raphson Method)

4. {Bqk
FIGURE 8.4  Procedure for nonlinear finite 

element computation

8. Obtain Fint

(8.5)

[ ] [ ] d(vol) [ ] { } d(vol) [ ] [ ] d(area)
T T T

vol vol area

B N G N T    

9.  int
tolerated error

ext

ext

F F

F


 (8.18)

10. Use  as external force, repeat the procedure 

11. Update the displacement increment {q} 
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CACULATE
Displacement Increment q

CONVERT to
Strain Increment 

INTEGRATE 
Stress Increment 

Iteration Scheme
e.g. Newton-Raphson

START at
a Given Boundary Conditions

e.g. Prescribed force or displacement

CACULATE
External Force Increment Fext

CHECK
Convergence

Fext –Fint <tolerance

If NOT

If Yes
Next loading increment

Constitutive Model
Stress Integration Algorithm
e.g. forward Euler scheme

Compatibility

CACULATE
Equivalent Internal Force Fint

Global/Nodal
(Force vs. Displacement)

Local/Gaussian
(Stress vs. Strain)

Detailed computation procedure

Courtesy of KH Yang
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(a) (b)

(c)

FIGURE 8.5  Triangular elements (a) CST element 

(b) LST element (c) CuST element

8.2.4 Types of elements

(1) Solid elements

T3 elements (CST elements): 

the strain variation is constant

T6 elements (LST elements): 

the strain variation is linear

T15 elements (CuST elements): 

the strain variation is cubic or nonlinear

Low order

   u N q    (8.2)

(8.3)       L u L N q B q                 

/ x [L]=        , y /

High order
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(a) (b)

FIGURE 8.6  Quadrilateral elements 

(a) Q4 element (b) Q8 element

Quadrilateral elements:

Q4 elements: 

strain change is linear (low order)

Q8 elements: 

strain change is quadratic (nonlinear, 

high order)

Low order High order
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One Q8 element Four Q4 element

FIGURE 8.7  Comparison of accuracy between a Q8 element and four Q4 elements

Accuracy?
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1q 2q

FIGURE 8.8  Two-node bar element

FIGURE 8.9  Two-node beam element

(2) Bar elements, truss elements, 

Anchor elements

(3) Beam elements, plate elements

q1

q2 q3

q4
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Soil elements

Interface elements

Structure material

FIGURE 8.10  Interface element

● The interface element connects structures and soil 

● With or without thickness 

● Has a large normal stiffness but relatively small 

shear stiffness 

● It can simulate the relative displacement between 

soil and structures.

● Rinter is often used to represent the behavior of 

interface element by reducing the shear strength 

of adjacent soils

(4) Interface elements
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Soil elements

Soil elements

Structure material

Soil elements

Interface elements

Structure material

Rinter=1.0 ? Rinter=0.0 ? Rinter=0.5 ? 

No interface elements?
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8.3 Effective stress analysis and total stress analysis 
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FIGURE 2.27  Drained behavior for saturated coarse granular
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(a) (b) (c)
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FIGURE 2.28 Undrained behavior 



FIGURE 2.29 Active lateral earth pressure (drained analysis)

Effective stress analysis: soil and water are analyzed, respectively

Drained analysis: excess pore water pressure can be dissipated.
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Input parameters:

Wall

(a) (b) (c)

u

z

gwz
a wK z zg g aK zg 

aa 

, ,cg   



FIGURE 2.30 Active lateral earth pressure (effective stress undrained analysis)

Effective stress analysis: water and soil were analyzed, respectively 

Undrained analysis: excess pore water pressure is not dissipated.
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Wall

(a) (b)

Input parameters:

u

, ,cg   

a 



FIGURE 2.32 Active lateral earth pressure (total stress undrained analysis)

Total stress undrained analysis: soil and water was analyzed as a single material
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Wall

Input parameters:

z

a

2a sat uK z sg 

, , 0sat usg  
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Drained analysis: No excess pore water pressure generation

Effective stress undrained analysis: soil and water are analyzed, respectively. 

Both the effective stress of the soil and water pressure can be computed 

simultaneously. The ground water level and water pressure should be set.  

Effective stress parameters such as c’, ’, g’ ….

Total stress undrained analysis: soil and water are analyzed as a single 

material. No pore water and pore water pressure exist in the analysis. The 

ground water level and water pressure should not be set. Total stress 

parameters such as su, =0, g, ....

Summary
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Based on the principle of effective stress,

{ } { } { }u     

In the undrained condition, the soil and pore water will deform simultaneously, so the 

strain of the soil and pore water should be the same. The effective stress acting on the 

soil and the pore water pressure of the pore water can be obtained as :

{ } [ ]{ }D     { } [ ]{ }wu D   

(8.19)

(8.20) (8.21)

[ ] [ ] [ ]wD D D  (8.22)

[D] and [Dw] represent the constitutive matrix for the soil and pore water, respectively.

{ } [ ]{ } [ ]{ } [ ]{ }wD D D         
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Effective stress undrained analysis

FE computation procedure:

1. Estimate soil effective stress parameters（c’,’, E’,m’,…）

2. Compute water constitutive matrix [Dw] and soil constitutive matrix [D]

3. Compute

4. Establish the stiffness matrix [K]

5. Use FEM procedure [K]{q}={F} to obtain nodal displacement {q}

6. Compute {}=[B]{q} to obtain strain{}

7. Use                        to obtain

8. Use {w}=[Dw]{} obtain {w} 

][][][ wDDD 

}]{[}{  D }{
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Total stress undrained analysis

FE computation procedure:

1. Estimate soil total stress parameters（c, , E, m, g）

2. Compute the constitutive matrix [D]

3. Establish the stiffness matrix [K]

4. Use FEM procedure, [K][q]=[F], to obtain nodal displacement [q]

5. Compute {}=[B][q] to obtain strain{} 

6. Use []=[D]{} to obtain []
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FIGURE 8.11  A element for the coupled analysis (eight 

deformation nodes and four porewater pressure nodes)

Deformation nodes

  Porewater pressure nodes

The coupled analysis:

Couple the continuity of equation or general 

consolidation equation with the constitutive 

and equilibrium equations.

In addition to the parameters of soil models, 

the coupled analysis also requires the 

coefficient of permeability and loading time.

The coupled method uses displacement and 

porewater pressure as unknowns and therefore 

results in both displacement and porewater 

pressure degrees of freedom at element nodes
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FIGURE 8.12  Typical stress-strain relations of soils

8.4 Commonly used soil models and related 

parameters 
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8.4.1 Mohr-Coulomb (MC) model  linear elastoplastic model
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Mohr-Coulomb yield surface

Y is fixed and defined by 

the Mohr-Coulomb 

failure criterion
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FIGURE 8.13  Yield function and 

plastic potential function for 

the Mohr-Coulomb model

Plastic potential function, Q

Yield function, Y
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vol

K B D B dV  (8.6)

 { } [ ] [ ] { } [ ]{ }
e p ep

D D D       

(8.15)
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If  , Y＝Q, associated flow rule.

If  , non-associated flow rule. As  reduces, less 

dilation is generated.

If =0, zero plastic dilation (i.e., no plastic volume change) occurs

37

}]{[}]}{[]{[}{   epp DDD

Required parameters: c, , E, m, 

(8.15)
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Two drawbacks:

(1)The magnitude of the plastic volumetric strain (i.e., the 

dilation) is much larger than that observed in real soils for the 

associated flow rule.

(2) Once the soil yields, it will dilate for ever. Real soil may 

dilate initially when the stress state meets the failure surface, 

and  will often reach a constant volume condition at large 

strain, that is, zero incremental plastic volumetric strains
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FIGURE 14 Mohr-Coulomb model 
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FIGURE 8.15   Effective stress path and total stress path of an elastic material in triaxial CD tests 

Undrained Analysis

p=(1+2+3)/3, q=(13)
q (kPa)

ESP
TSP

p or p'  (kPa)

30

100 110

u =10 kPa

1

2 =3



41

q q q

2su

Uf

Uf

over 
Uf

ESP TSP
ESP

TSP ESP
TSP

(a) Real Soil (b) Undrained A (c) Undrained B

Kf  compression line Kf  compression line

Kf  compression line

 p'  

2su

2su

estimates

 p'   p'  
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FIGURE 8.19  Duncan and Chang’s (DC) model

ult)( 31  



Asymptote

f)( 31  

3
1






8.4.2 Duncan and Chang (DC) model  nonlinear elastic model

Duncan and Chang (1970)

(8.23)
1

11

i a

q

E q








q =deviator stress 

q=1−3; 1 and 1are major and minor 

principal stresses, respectively 

1= the strain in the direction of major principal 

stress 

Ei= initial tangent modulus 

qa=( 1−3)ult =asymptote of the stress-strain 

curve, representing the ultimate strength
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FIGURE 8.12  Typical stress-strain relations of soils
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n

i a

a

E KP
P

 
  

 
(8.24)

Pa= atmospheric pressure = 101.3 kN/m2

K= dimensionless stiffness modulus number

n= dimensionless stiffness modulus exponent.
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f f aq R q

1 3( )  a ultq

Rf = failure ratio. For most types of soil, 

Rf ranges between 0.5 to 0.9

1 3( )  f fq

FIGURE 8.19  Duncan and Chang’s (DC) model

According to the Mohr-Coulomb failure theory,

32 cos 2 sin

1 sin
f

c
q

  







(8.26)

ult)( 31  



Asymptote

f)( 31  
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


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FIGURE 2.9  Apparent cohesion and friction angle for sand

0=angle of shear resistance when 3=1 atm=101.3 kN/m2

(8.27)

Substitute Eqs. 8.24, 8.25, and 8.26 in Eq. 

8.23, and differentiate with respect to strain, 

and then we can obtain the tangent elastic 

modulus Et for any stress state

   
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FIGURE 8.22  Variation of the tangent Young’s modulus with strain
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FIGURE 8.22  Variation of the tangent Young’s modulus with strain

In the FEM analysis:

In numerical analysis, loading 

is first divided into many sub-

loading. Therefore, even the 

soil stress-strain relation is 

nonlinear, the stress-strain 

relation at each sub-load stage 

can be treated as linear elastic, 

in which Young’s modulus can 

be expressed by Et
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
 3

Kur= dimensionless 

unloading/reloading 

stiffness modulus number.

FIGURE 8.21  Unloading-reloading Young’s modulus
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(8.1)   D  
  



dVBDBK

vol

T

E ]][[][][ 

According to Eqs. 8.1 and 8.6, to establish the stiffness 

matrix of an element, the required parameters are E ( Et or 

Eur ) and m
(8.6)

The stiffness matrix at a stress level or at a stress state can

then be obtained. The required parameters are:

c, 0 ,  , K , n , Kur , Rf , m

Duncan and Chang’s model is often categorized as the elastic model
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8.4.3  Modified Cam-clay (MCC) model -- critical state model 

The critical state of soil refers to the state where volumetric strain is not further produced 

with the increase of shear strain at large shear strain. The critical state is usually either the 

failure state or the ultimate state.

1 2 3

1
( )

3
p        

1 3
q    

, 

1, 2, and 3 are the major, intermediate and minor 

principal stresses. 

Assuming in the laboratory triaxial test condition: 

(8.30)

(8.31)

1
0 0.1 0.2

v


0.0

0
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0.1

0

3
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



450

900

(k
P

a) Critical state
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FIGURE 8.24  State boundary surfaceFIGURE 8.23  Definitions of various parameters in critical soil mechanics 
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The critical state line:

ln
cs

e e p  

Unloading/reloading

 Isotropic virgin consolidation line (IVCL)

One dimensional consolidation line
Critical state line (CSL)

(a)

(b)

Critical state line (CSL)

M

q

p 

p 1 
ln p  

e

ea

ecs

ek k



(8.32)

(8.33)

Combined Eq. 8.32 with the definition of p'
and q, the friction constant, M, is given by

6

3

sin

sin
M









(8.34)

q Mp
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lne e pk k  

Isotropic virgin consolidation line:

ln
a

e e p  

Unloading/reloading

 Isotropic virgin consolidation line (IVCL)

One dimensional consolidation line
Critical state line (CSL)

(a)

(b)

Critical state line (CSL)

M

q

p 

p 1 
ln p  

e

ea

ecs

ek k



The unloading/reloading equation

(8.36)

(8.35)
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The state boundary surface with the MCC model: 

(8.39)

(8.38)

(8.37)

The yield surface : 

p0 is the p-value when q =0
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 { } [ ] [ ] { } [ ]{ }e p epD D D       

[ ] [ ] [ ]ep e pD D D  (8.16)

(8.15)

The parameters related to the state boundary surface or the yielding surface are 

M (or ') ,  , k

If the MCC model is adopted as the yielding function, the required input 

parameters are M (or  '),  , k , plus elastic constants E'ur and m'ur that form the 

elastic constitutive matrix [De] 
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Y1 Y2Y is enlarged with the stress state 

and defined by MCC model
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FIGURE 8.25  Hardening soil model (a) stress-strain curve by a hyperbola (b) shear yield surface (tension in positive)

8.4.4 Hardening soil (HS) model --- nonlinear elastoplastic model
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Schanz et al. (1999) derived the yield 

function for the soil subject to shear as

50

2 2

1 /

f p

s

a ur

R q q
Y

E q q E
g


  
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(8.40)

E50 is the tangent Young’s modulus 

corresponding stress level=50%,

g p is the plastic strain function

The rest parameters such as q , qa , qf , Rf , 

Eur are exactly the same as those in the 

DC model

Mohr- Coulomb failure line

a

b

c

Mean effective stress, p' 

D
ev
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to

ri
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st
re

ss
, 

q

(b)



60

FIGURE 8.26  Reference tangent Young’s modulus 

considering the effect of cohesion
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(8.41)

(8.42)

= reference unloading/reloading 

Young’s modulus

ref

urE

p ref is the reference pressure, which is similar to the 

atmospheric pressure Pa in the DC model; usually 

sets p ref =100 stress unit

= reference Young’s modulus50

refE

ϕ

σ  

σ 3,  p
ref

c  

c  cot ϕ 

τ

HS allows tension up to 

σ 3 = -c  cot ϕ   

3

n

i a

a

E KP
P

 
  

 
(8.24)
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FIGURE 8.27  Yield surfaces used in the hardening soil model
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Use the mobilized friction angle ( m) and dilation angle 

(m) to represent the shear stress and dilation behavior of 

the soil at various stages

FIGURE 8.29  mobilized friction angle

m

1 
3 

t
ϕ 

sin sin
sin

1 sin sin

m cv

m

m cv

 


 

 


 

(8.44)
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cv is the friction angle at the critical state or at the state of 

constant volume

g

FIGURE 2.8 Rowe’s theory
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When the soil is at failure, m= , and m= , substitute those values into 

Eq. 8.45, we can obtain

sin sin
sin

1 sin sin

cv

cv

 


 

 


 

Move cv to the left hand side (Eq. 8.46), and make a necessary simplification, then 

sin sin
sin

1 sin sin
cv

 


 

 
 



Therefore, as long as the  and  is known, the cv can be obtained from Eq. 8.47, 

and the m and m can be obtained from Eqs. 8.44 and 8.45, respectively.

The HS model requires        (or        ),      ,    ,    ,      ,       ,      (or         ),      (or        ),

(or          ), m,           ,      ,      
urE ref

urE urm c  fR
refp

urE ref

urE
50E

50

refE

oedE ref

oedE NCK ,0 cp 

(8.46)

(8.47)
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Stage Type A(m2) t(m) s(m) E(MPa) m

1 steel 0.012 - 8 210000 0.2

2 slab - 0.15 - 21000 0.15

3 slab - 0.15 - 21000 0.15

4 slab - 0.15 - 21000 0.15

5 slab - 0.15 - 21000 0.15

6 steel 0.0219 - 3.4 210000 0.2

Parameters for the lateral support

Note : s= spacing distance between struts ; t = thickness of slab
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FIGURE 8.31  Wall deflection and surface settlement computed from a typical conventional finite element method

8.4.5 Small strain model

Typical field measuring result

Wall deformation curve

Conventional FEM
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FIGURE 8.32  Yield surfaces at different strains of clay soils

Area 1: 10-7 to 10-5; linear elastic, 

high stiffness 

Area 2: 10-4; linear elastic, stiffness 

decreases rapidly

Area 3: a plastic strain is generated

Area 4: When the strain reaches Y3, 

the soil deformations and 

plastic strain are all increased 

and a large amount of 

deformation is generated.

Smith et al. (1992)

Y3 is often called initial yield surface
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FIGURE 8.33  Shear modulus degraded with shear strain
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FIGURE 8.35  The HS, HSS, and MC undrained B models for 

an excavation in 80 m thick soft clay at the final stage

FIGURE 8.43  Distance of finite element mesh boundary (Waterman, 2009)
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8.5 Determination of soil parameters

Effective shear strength parameters: c, 

Undrained (or total) shear strength parameters: su,  =0

(All refer to Sections 2.5 and 2.6)

The MCC model: E'ur , m'ur , M (or ') ,  , k

FIGURE 8.23  Definitions of various parameters 

in critical soil mechanics 

lne e pk k   (8.36)

p

pd
de




k

(1 ) 2.303(1 )

/ (1 )
ur

v s

dp dp e p e p
K

d de e C k

    
      



(b)

p 1 ln p  

e

ea

ecs

ek k



Differentiate Eq. 8.36 at both sides,

(8.52)

(8.53)
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 
2.303

c
C

2.303

s
C

k (8.48) (8.49)

Empirical relationship

1 1
( to )
10 5

s c
C C

6.909(1 )(1 2 )
3 (1 2 ) ur

ur ur ur

s

e p
E K

C

m
m

  
    

According to Table 2.13. we have

(8.54)

0 2m  .ur

(8.50)
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The parameters e, M, , k are directly from the tests

Analysis of the TNEC case with the MCC model
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MCC model

The adjusted parameter k
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Relationship of stress path in modified Cam-Clay yield surface and yield surface of natural soil
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Adjusted parameters of undrained material (clay) for the MCC model

84

1 1
( to )
5 4

s cC C (8.51)

The parameters k is adopted directly from the tests for 

the soil at a depth of GL0 to GL-12 m and is adjusted to 

be 0.2 for the soil below GL-12 m
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MCC model

The adjusted parameter k
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The HS model requires        (or        ),      ,    ,    ,      ,       ,      (or         ),      (or        ),

(or          ), m,           ,      ,      
urE ref

urE urm c  fR
refp

urE ref

urE
50E

50

refE

oedE ref

oedE NCK ,0 cp 

For clay, all the parameters can be obtained by the simulation of triaxial compression 

tests with unloading/reloading and oedometer tests using the FEM with the HS model. 

6.909(1 )(1 2 )
3 (1 2 ) ur

ur ur ur

s

e p
E K

C

m
m

  
     (8.54) 0 2m  .ur

From correlation:

50
/ (3 ~ 5) / 3.5

ref ref ref

ur ur
E E E   

  

50
(0.7 1.0)

ref ref

oed
E E  

Rf =0.9m 0.9
o

30   (Bolton, 1986)

(NC Clay)

(OC Clay)
50

/ (2 ~ 3) / 2.5
ref ref ref

ur ur
E E E   

50 / 3 ref ref

urE E

Elastic constants

 { } [ ] [ ] { } [ ]{ }
e p ep

D D D        (8.15)
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For sand, it is determined to the unloading/reloading Young’s modulus (E'ur) first:

E'ur=f (SPT-N)  (2,000 to 3,000)N (Khoiri and Ou, 2013)

where E'ur is in kN/m2, N is SPT-N value

0 2m  .ur
  

50

ref ref

oed
E E  m = 0.4 to 0.6

Rf =0.5 ~ 0.6 (Wong and Broms, 989)    o
30 (Bolton, 1986)

(8.56)

3 3
cot cos sin

cot cos sin

m m

ref ref

ur ur urref ref

c c
E E E

c p c p

    

  

          
                

(8.42)can be obtained from ref

urE

50
/ (3 ~ 5) / 3.5

ref ref ref

ur ur
E E E    (Loose sand)

(Dense sand)
50

/ (2 ~ 3) / 2.5
ref ref ref

ur ur
E E E   
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The HSS model requires        (or        ),      ,    ,    ,      ,       ,      (or         ),      (or        ),

(or          ), m,           ,      ,      
urE ref

urE urm c  fR
refp

urE ref

urE
50E

50

refE

oedE ref

oedE
NCK ,0 cp  , G0, g0.7

G0 is a shear modulus at very small strain, which 

can be obtained from bender element test, 

seismic survey, a small strain triaxial test, or 

from empirical formulas. 

g0.7 is the shear strain corresponding to G/G0=0.7
FIGURE 8.33  Shear modulus degraded with shear strain
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FIGURE 8.34  the HSS model for TNEC case
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For the soil subject to loading stress path 

such as the soil behind the wall, the E is 

more close to E50. The relationship of E50

and Eur as used in the HS model 

(                                ) can be applied. 

The m should be in the range of 0.3 to 0.4.

The MC model for sand, c' and ', E , m and .

The dilation angle  can be estimated using

The magnitude of parameters E and m is related to the stress or loading path. 

The soil in front of the wall is subject to unloading stress path, the E can 

be determined following Eq. 8.56, and m can be set equal to 0.2.

E =E'ur=(2,000 to 3,000)N (8.56)

Plastic

Experimental result

Linear elastic
E50

1

A

1
3






1

FIGURE 8.14  Mohr-Coulomb model

50
/ (3 ~ 5)

ref ref

ur
E E 

   o
30 (Eq. 8.55) 
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The MC undrained model B for clay:  c' and ', E , m and .

E' = E'ur m' =m'ur0.2
o

30  

0.5 or 0.495um 

The MC undrained model C for clay: su, u=0, undrained Eu, undrained mu

2(1 )

E
G

m


 

 2(1 )

u
u

u

E
G

m




(1 ) (1 )

(1 ) (1 )

u ur u

u

ur

E E
E

m m

m m

  
 

   (8.59)

(8.57) (8.58)



92

1 2 4 6 8 10

1600

1200

800

400

0

PI < 30

30 < PI < 50

PI >50

Overconsolidation ratio, OCR

E
u

 /s
u

FIGURE 8.37  Relation of Eu/su with OCR and PI 

(redraw from Duncan and Buchignani, 1976)

Eu/su = f (PI, OCR)
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FIGURE 8.38  Initial stresses (a) in the free field (b) in sloping ground

8.6 Determination of initial stresses

8.6.1 Direct input method
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x

1h
G.W.L
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hmy g 

0  x yK

sin / 2xy mht g 

For sloping ground:
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FIGURE 8.39  Calculation of initial stresses with total stress 

2

uc ue

u

s s
s


 (8.59)

Isotropic total stress analysis: 

y=x

Equivalent to  = 0

0 1 sin K

Anisotropic total stress analysis:

y= y + u ,   x=K0y  + u 0 /x yK  

0 0(or ) / 1x yK K   
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FIGURE 8.40  Initial stresses 

8.6.2 Gravity generation method
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Wall

B'

9 m

●Change the boundaries of excavations 

profile to be all rollers 

●Assign a suitable m to each element 

● Ignore undrained behavior for the 

undrained materials in the effective stress 

analysis

●Apply gravity body force over the whole 

area and use the standard FEA procedure 

●Examine the obtained initial stresses for 

correctness

●Change the boundaries and the data sets 

back to what they should be in the formal 

analysis

●Reset all the induced movements equal to 0

FIGURE 8.42  Plane strain analysis of an excavation
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8.7 Structural material models and related parameters

Summarize the contents from Section 7.7

Soldier piles and sheet piles:  The nominal Young's modulus is usually 

reduced by 20％, considering repeated use of the piles.

Diaphragm walls and column piles:  The stiffness (EI) is usually reduced 

by 20 to 40%, considering the possibility of bending moment-

induced cracking in concrete. 
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FIGURE 8.41  Definition of the aspect ratio

8.8 Mesh generation

8.8.1 Shape of the element

●Avoid irregular shapes

● The closer to 1.0 is the aspect ratio, the 

better is the shape

● The square or an equilateral triangle is the 

best choice

● 1.0 L/B  2.0~2.5
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FIGURE 8.42  Plane strain analysis of an excavation
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Bad elements

Good elements
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Good elements
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Bad elements
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Bad elements confined by good elements

Interested area :
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Interested area :

Bad elements allocated near the boundary
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(1) In principle, mesh should be finer in the area of stress concentration or rapid 

change of stress or strain

1
{ } [ ] { }q K F



8.8.2 Density of mesh



(2) Avoid the large difference in stiffness for the adjacent elements

1 3 3

12 12
1,953(12 )
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EI EI
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12 12 12

(10) 1,000
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1,953,000
K

K

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For example, beam elements

10 m0.8 m

1 2
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FIGURE 8.42  Plane strain analysis of an excavation 
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FIGURE 8.42  Plane strain analysis of an excavation 

8.8.3 Boundary condition
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HeZone of small strain stiffness

 

  

Stability analysis: a  Ht and a  2He

Structural forces analysis: a 2He

Deformation analysis: a  2He (Vermeer and Wehnert, 2005)

FIGURE 8.43  Distance of finite element mesh boundary (Waterman, 2009)
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(a) (b) 

FIGURE 8.44  3D elements

8.9 Plane strain analysis and three-dimensional analysis
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He=20.3 m, 

t =1.1 m

Ou, et al. . (1996), Three-dimensional finite element analysis of deep excavation, 

Journal of Geotechnical Engineering, ASCE, No. 5, pp. 337-345.
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FIGURE 8.45  Comparison of the results from 2D analysis, 3D analysis, and field measurement for the Haihaw excavation
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FIGURE 8.46  Variation of wall deflections with reduced strength
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8.10 Finite element stability analysis
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FIGURE 8.4  Procedure for nonlinear finite element computation
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Stress integration scheme(e.g. Forward Euler method with 
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     parameters of the yield function
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Case study: Taipei Rebar Broadway Case
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Plastic point plot at SRmax as using EP support system
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8.11 Finite element analysis procedure
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FIGURE 8.42  Plane strain analysis of an excavation 

1. Define the problem dimension

2. Set the target geometry and boundaries
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3. Select the material model and evaluate their input parameters

For the target with various stress paths, a high level constitutive model 

such as the HS or HSS model would be a good choice. 

For simple problems, monotonic loading or /unloading for example, 

the MC model with the parameters obtained from the designated 

stress path can be selected. 
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4. Generate the mesh

Inspect the elements to ensure their aspect ratio, and ensure good elements or a 

finer mesh to be allocated in important or interested regions. 



5. Set the ground water level and 

water pressure

6. Establish initial stresses
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7. Simulate construction procedure including dewatering

In construction practice: In FE analysis: 
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FIGURE 7.5  Profile of a two-story basement with mat foundation
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Strut demolish and 

floor slab construction

FIGURE 7.6  Procedure of a basement construction
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FIGURE 7.7  Deformation, bending moment, and shear force diagrams of the wall computed at main stages
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FIGURE 7.8  Comparison of wall 

deflections with the simulation of 

individual activity and combined activities
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9. Validate the analysis results

(1) Case History

(2) Field Observations

(3) Analytical or Empirical Solutions 

(Equations or design charts)

(4)  Laboratory Tests

8. Check convergence

int
tolerated error

ext

ext

F F

F



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Thank you for your attention!

End of Chapter 8



136

TPKE project


